

ADL400

Installation and operation instruction 14

ACREL Co.,Ltd

Declaration

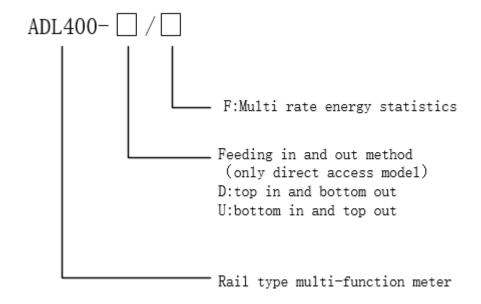
The copyright is the property Afcrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Manual revision record

Data	Old	New	Change	
2022.05.17		T1.0	1.First version	
2022.08.19	T1.0	T1.1	2.Add direct access model	
2023.02.08	T1.1	T1.2	3.Add Device model register	
2023.12.21	T1.2	T1.3	4.Added some detailed descriptions	
2024.03.21	T1.3	T1.4	5. Add a current specification	
			6. Add somedescription s of data units	
			7. Edit the size description image	


content

1 General	 - 1 -
2 Type description	 - 1 -
3 Function description	 - 1 -
4 Technical parameter	 - 2 -
5 Outline	 - 3 -
6 Wiring and installing	 - 3 -
7 Function description	 - 5 -
8 Operation and display	 - 5 -
9 Communication description	 - 11 -

1 General

ADL400 is a smart meter designed for power supply system, industrial and mining enterprises and utilities to calculate the electricity consumption and manage the electric demand. It features the high precision, small size and simple installation. It integrates the measurement of all electrical parameters with the comprehensive electricity metering and management provides various data on previous months, checks the 31st harmonic content and the total harmonic content. It is fitted with RS485 communication port and adapted to MODISTUS.ADL400 can be used in all kinds of control systems, SCADA systems and energy management syntames. meter meet the related technical requirements of the related technical requirem

2 Type description

3 Function description

Table 1 Function description list

Function	Function description	Function provide
Magaurament	Active kWh (positive and negative)	μ
Measurement of	Reactive kvarh (positive and negative)	μ
energy	A. B, C split phase positive active energ	μ
Measurement of	UÃI	μ
electrical	PÃQÃSÃPFÃF	
parameters	FAQASAFFAF	μ
Measurement of	2. 21ST Voltage and Currentharmonic	
harmonics	2~31 ST Voltage and Currentharmonic	

LCD Display 12 bits section LCD display, backgroun light		μ	
Key	3 keys to communication and set		
programming	parameters	μ	
Pulse output	Active pulse output	μ	
	Date, time	¶	
Multi-tariff and	Max demand andccurrence time	¶	
functions	Frozen data on last 48 months, last 90d	¶	
	Adapt 4 time zones, time interval lists,	- T	
	14 time interval by day and 4 tariff rate	11	
	Communication interface: RS485,		
Communication	Communication protocol:	μ	
	MODBUS-RTU		

4 Technical parameter

Table 2 technical parameter description

project performance parameter					
		fication	3 phase 3 wires phase wires		
		Referencevoltage	3 h 230/400V		
	Voltago	Consumption	<10VA (Single phase)		
	Voltage	Impedance	! 0		
		Accuracy class	Errorf 0.2%		
			0.01-1(6)A (Secondary access model)		
Measurement		Input current	0.1-10(80)A(Direct access model)		
	Current		0.1-10(100)A(Direct access mode)		
		Consumption	<1VA Singlephase rated current		
		Accuracy class	Errorf 0.2%		
		Power	Active, reactive, apparent power, erfc0.5 •		
		Frequency	45 65Hz ÈErrorf 0.2%		
	Active EnergyClas(kWh)		0.01-1(6)A,0.1-10(80)A:C(kWh)		
Metering			0.1-10(100)A:B(kWh)		
		Clock	00.5s/d		
Digit signal		Energy pulse output	1 activephotocoupleroutput		
	Width of pulse		80±20ms		
pulse	Dulas assatant		Direct access mode 100mp/kWh		
		Pulse constant	Secondary access mode0000mp/kWh		
	Interface	and communication tocol	RS485ÖModbus RTU		
communication	Range	of communication address	Modbus RTU:1∼ 227 ×		
		Baud rate	1200bps38400bps		
			-25 to +55 (Secondary access model)		
	V	orking temperature	-40 to +70 (Direct access model)		
environment		Relative humidity	" •(No condensatio)n		

5 Dimension drawings

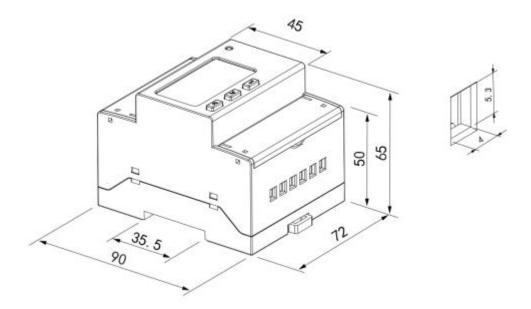


Fig 1 connect via CT

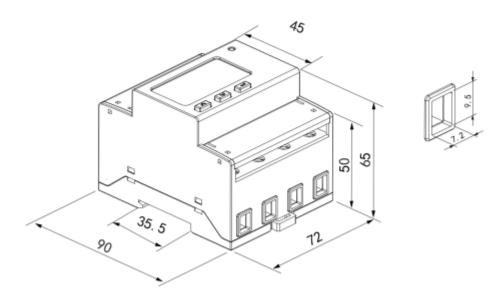


Fig 2 direct connect

Note \ddot{G} he torque of direct connect should not be greater 3k4hh m Èand the torque of connect via CT should not be greater than 5-2N·m \ddot{A}

6 Wiring and installing

6.1 Wiring sample of voltage and current

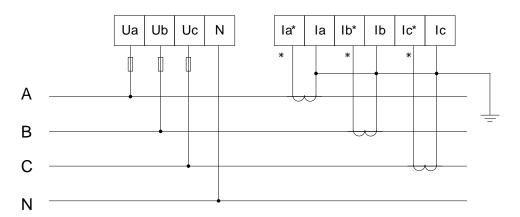


Fig 3 Three phase four lines connect via CT

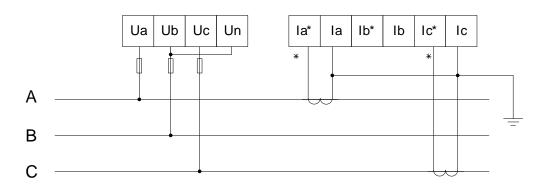


Fig 4 Three phase three lines connect via CT

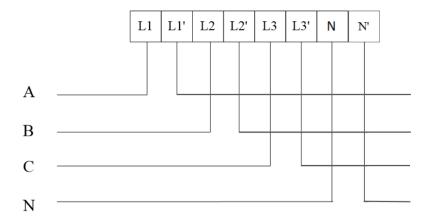


Fig 5 Three phase four lines direct connect

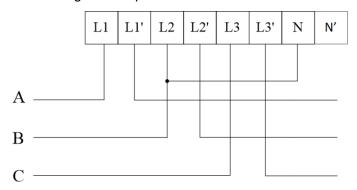


Fig 6 Three phase three lines direct connect

6.2 Wiring diagram of communication and pulse terminals

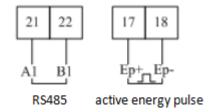


Fig 7 Communication, pulse connection

7 Function description

7.1 Measurement

It can measure the electrical parameter,include $\tilde{A}P\tilde{A}Q\tilde{A}S\tilde{A}PF\tilde{A}F\tilde{A}2\sim31$ th harmonic. Such as $J=220.1V\dot{E}f=49.98$ Hz, J=1.99A $\dot{E}P=0.439$ kW

7.2 Calculating

Can measure the active energia forward active energia reactive energia rea

7.3Timing

There are four time tables, four time zones, and every table have fourteen time period and four rates can be set.

7.4 Demand

The description about demand:

Table 3Demandescription list

	•				
Demand	The averagepower in the demand cycle.				
Maximum	The mention was value of demand in a maried of time				
demand	The maximum value of demand in a period of time.				
Slip time	A recurrence method to measure the demand from any time point duperiod shorterthan the demand period. The demandasured by this means is called sliding demand. The recurrence time is sliding with time.				
Demand cycle	The time period between two same average value of demand.				

The default demand cycle is 15 minutes, slip time is 1 minute.

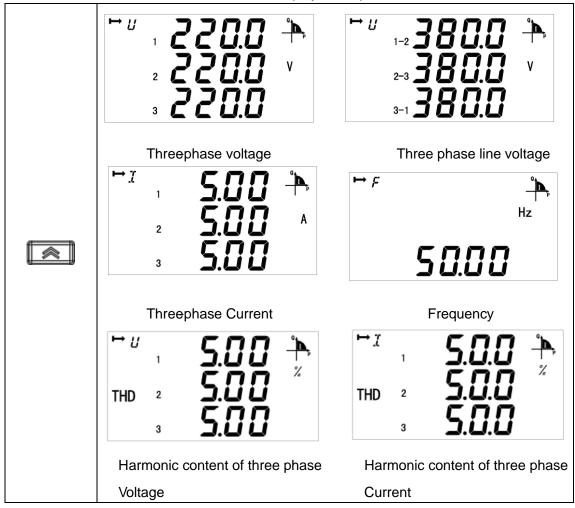
The meter can measure 4 kinds of maximum demand: forward active, reversing active, inductive reactive capacitive reactive maximum demand and time of occurrence.

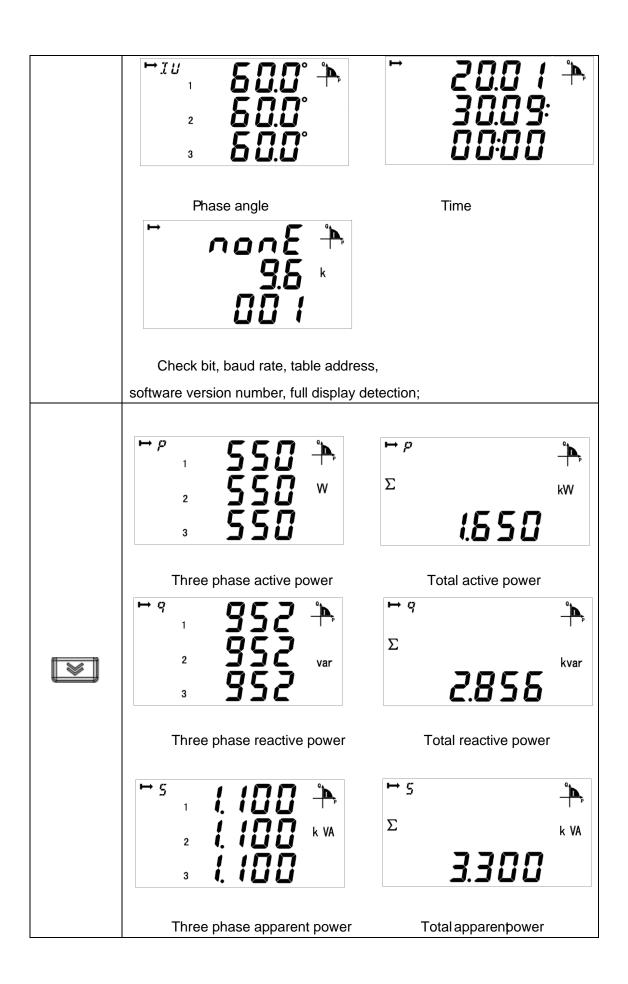
7.5 History data statistics

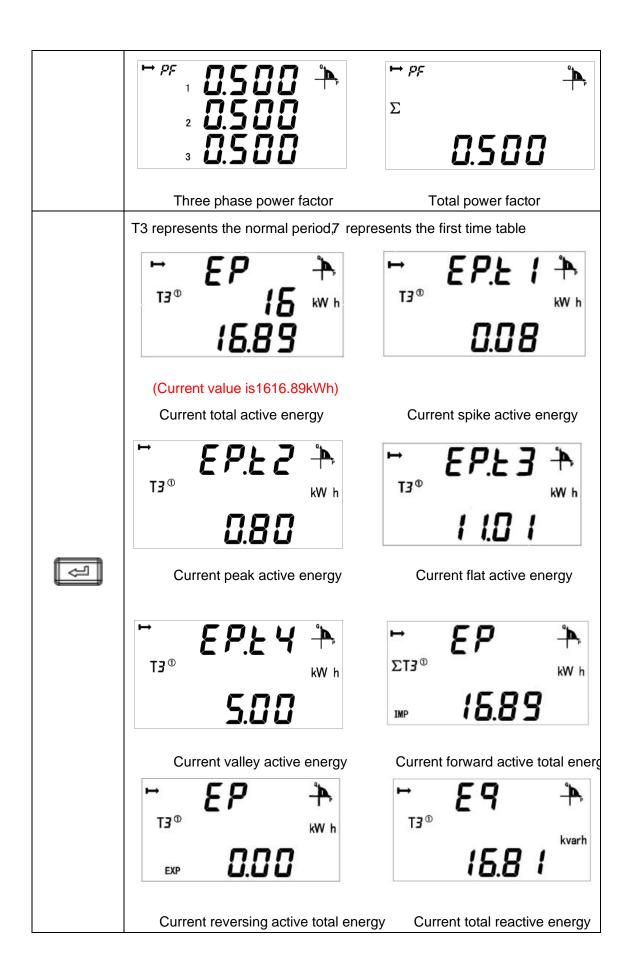
The meter can record last 48 months or last 90 days history energy in each tariff.

8 Operation and display

8.1 Key function description


Table 4 Key function description


	7 11	•	
icon	Name	Function	
	Voltage and current, up	Check the voltage and current Leftward and change flash in	
		programming menu	
(f 1)		Check the power	
	Power, down	Rightward and change the value	
		on flash	
4		Check thænergy	
₩	Energy, enter	In/out programming menu	
4		Save changes	


8.2 Display menu

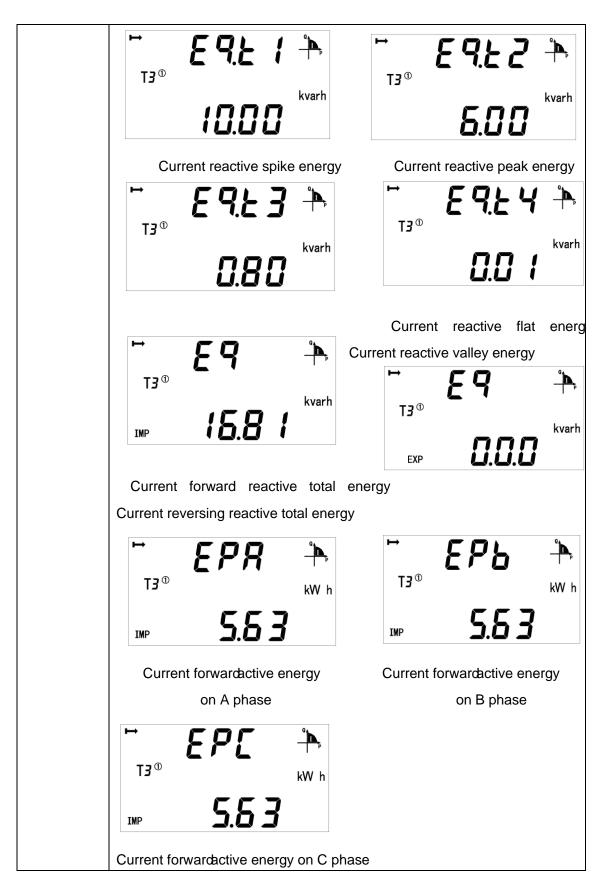
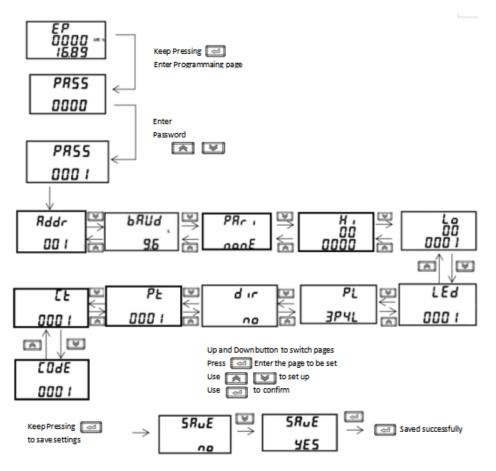

The meter will show the forward active energy after powering. The customers can change the information showing by pressing the keys. The menu description is listed as below:

Table 5 display descriptions


Note:

1. All the displaymenus above arien the model of ADL400 three phases four lines with multi-tariff rate function and can be changed by the keys.

- 2. There will not be power or power factor on each phase and will only show total power and power factor (Active, reactive, apparent) under the these three lines.
- 3. There will not be date, time, maximum demand and energy by time without the function of multi-tariff rate.
- 4. Thearrow represent the DIR settingsom left to right means that DIR is set to 0; if the arrow is from right to left, it indicates that DIR is set to 1.
 - 5. IMP In the lower left corner of the screen means forward, IN Impact In the lower left corner of the screen means forward, In Impact In the lower left corner of the screen means forward, In Impact In the lower left corner of the screen means forward, In Impact In

8.3 Key Menu

Keep press at any main menu and get if PASS' interface, and then press V K ROZ009', and enter the code. If you enter a wrong code, it will straw and back to main menu; and if you enter a right code, you can setatremeter After setting the parameter and keep pressing, it will show save and save the change by pressing yes' interface in no 'interface.

8.4 Data settings

Num	Second menu				
INUM	Symbol	Mean	Range		
1	ADDR	Communicate ADDR settings	1-247		
2	Baud	Baud choose	1200Ã2400Ã4800Ã9600Ã 19200Ã38400		
3	Pari	Parity choose	NoneÃOddÃEven		
4	LED	Backlight time	0-255minutesÈmore than 000 stay lighton		
5	PL	Wiring sample	3P4L:3 phas ∉ wires 3P3L:3 phas € wires		
6	DIR	direction of current	no-Forward yes-Reverse		
7	S-TY	Apparent power calculation method	PQS RMS		
8	EF-E	time-sharing measurement function	EF-Function on E-Function off		
9	Pt	Voltage tansformer settings	1-9999		
10	Ct	Current tansformer settings	1-9999		
11	CoDE	Code settings	1-9999		
12	PHAS	Phase angle calculatio method	No-Angle between each current and each voltage Yes-Angle between threephase current and phase a voltage		
13	nost	Starting power shield	Shielding rang: 0.1-2.0% (*UnIn)		

9 Communication description

The meter adapts MODBURTU protocol, and the baud rate can be chosen from 1200bps2400 bps4800 bps9600bps19200bpsand38400 bps. The dafault parity is None.

The meter needshielded twisted pair conductors connect Customers should consider the whole networks parameters such like communication virilength, the direction, communication transformer and network cover range, etc.

Note:

- 1 ÃWiring should follow the wiring requirements;
- 2 ÃConnect all the meter in the RS485 net work even some do not need to communication, which is benefit for error checking and testing;

- 3 ÃUse two color wires in connecting wires and all the A port use the same color.
- 4 ÃNo longer than 1200 meters of RS485 bus line.

9.1ADDR List

MODBUS-RTU protocol has 03H and 10H command to read and write registers respectively. The following chart is registe**[a**ddress list:

Table 8 communication address list

Address	Variable	Length	R/W	Notes
0000H	Current total active energy	4	R	
0002H	Current spike active energy	4	R	
0004H	Current peak active energy	4	R	kWh
0006H	Current flat active energy	4	R	UINT32
H8000	Current valley active energy	4	R	Keep2 decimal places
000AH	Current forward active total energy	4	R	Doution lowly if at and D
000CH	Current forward active spike energy	4	R	Particularly, if ct and P
000EH	Current forward active peak energy	4	R	is not all 1, actual electric energy value
0010H	Current forward active flat energy	4	R	should be product of
0012H	Current forward active valley energy	4	R	register reading and
0014H	Current reversing active total energy	4	R	Pt*ct, except for the
0016H	Current reversing active spike energy	4	R	specially noted registe
0018H	Current reversing Active peak energy	4	R	data.
001AH	Current reversing active flat energy	4	R	
001CH	Current reversing Active valley energ	4	R	
001EH	Current total reactive energy	4	R	
0020H	Current reactive spike energy	4	R	
0022H	Current reactive peak energy	4	R	
0024H	Current reactive flat energy	4	R	
0026H	Current reactive valley energy	4	R	
0028H	Current forward reactive total energy	4	R	lavorb
002AH	Current forward reactive spike energ	4	R	kvarh UINT32
002CH	Current forward reactive peak energy	4	R	Keep2 decimal places
002EH	Current forward reactive flat energy	4	R	Particularly,note the
0030H	Current forward reactive valley energ	4	R	same as above.
0032H	Current reversing reactive total energ	4	R	same as above.
0034H	Current reversing reactive spike	4	R	
003411	energy		IX.	
0036H	Current reversing reactive peak ener	4	R	
0038H	Current reversing reactive flat energy	4	R	
003AH	Current reversing reactive valley energy	4	R	
003CH	Time ÖsecondÃminute	2	R/W	
003DH	Time Öhour Ãday	2	R/W	

003EH	Time Ömonth Ãyear	2	R/W	
				baudÖ
				0 Ö1200
	First communication patÖ			1 Ö2400
003FH	AddressÄhigh 8 bitÅ	2	R/W	2 Ö4800
	BaudÄlow 8 bit Å			3 Ö9600
				4 Ö19200
				5 Ö38400
0040H	pulse constant	2	R	
0041H	First time zone address	2	R/W	
004111	First time zone start data:day		17/77	
0042H	First time zone start data:month	2 R/W	DΛΛ	
004211	Second time zone address		Time zone numbeÖ	
0043H	Second time zone start data:day	2	R/W	1 ÖFirst time zone
004311	Second time zone start data:month	2 17/17	2 ÖSecond time zone	
0044H	Third time zone address	2	2 R/W	3 ÖThird time zone
004411	Third time zone start data:day	2		4 ÖFourth time zone
0045H	Third time zone start data:month	2	R/W	
004311	Fourth time zone address	2		
0046H	Fourth time zone start data:day	2 R/V	DΛΛ	
004011	Fourth time zone start data:month		17/77	
0047H0060H	reserve			
0061H	Voltage of A phase	2	R	
0062H	Voltage of B phase	2	R	ResolutionÖ0.1V
0063H	Voltage of C phase	2	R	
0064H	Current of A phase	2	R	
0065H	Current of B phase	2	R	ResolutionÖ0.01A
0066H	Current of C phase	2	R	
0067H	Active power of A phase	2	R	
0068H	Active power of B phase	2	R	Complement form
0069H	Active power of C phase	2	R	ResolutionÖ0.001kW
006AH	Total active power	2	R	
006BH	Reactive power of A phase	2	R	
006CH	Reactive power of B phase	2	R	Complement form
006DH	Reactive power of C phase	2	R	ResolutionÖ0.001kvar
006EH	Total reactive power	2	R	1
006FH	Apparent power of A phase	2	R	
0070H	Apparent power of B phase	2	R	Complement form
0071H	Apparent power of C phase	2	R	ResolutionÖ0.001kVA
0072H	Total apparent power	2	R	
0073H	Power factor of A phase	2	R	0
0074H	Power factor of B phase	2	R	Complement form
0075H	Power factor of C phase	2	R	ResolutionÖ0.001
UU / DIT	Fower lactor of C priase		K	╛

0076H	Total power factor	2	R	
0077H	frequency	2	R	ResolutionÖ0.01
0078H	Voltage between AB	2	R	
0079H	Voltage between ®	2	R	ResolutionÖ0.1V
007AH	Voltage between AC	2	R	
007BH	Forward active maximum demand	2	R	
007011	Time of occurrence for the forward	0	5	
007CH	active maximum amount:minuthour	2	R	
007011	Time of occurrence for the forward	0	_	
007DH	active maximum amount:daymonth	2	R	
007EH	Reversing active maximum demand	2	R	
	Time of occurrence for the eversing			
007FH	active maximum demand	2	R	
	amount:minuteÃhour			
	Time of occurrence for the eversing			
H0800	active maximum demanamount:dayÃ	2	2 R	Description 60 and
	month			ResolutionÖ0.001
000411	Maximum forward demand for	0	_	Sequence of
0081H	reactive power	2	R	occurrence time:
	Time of occurrence for the forward		minuteHourd	minuteriourday
0082H	reactive maximum amount:minute	2	R	monun
	hour			
0083H	Time of occurrence for the forward	2	R	
000311	reactive maximum amount:daymonth	2	K	
0084H	Maximum reversing demand for	2	R	
0004FI	reactive power	2	K	
	Time of occurrence for the reversing			
0085H	reactive maximum amount:minuñe	2	R	
	hour			
0086H	Time of occurrence for the reversing	2	0 0	
000011	reactive maximum amount:daymonth	2	R	
0087H	Forward active energy of A phase	4	R	kWh
0089H	Forward active energy of B phase	4	R	UINT32
008BH	Forward active energy of C phase	4	R	Keep2 decimal places
008DH	PT	2	R/W	
008EH	СТ	2	R/W	
008FH0091H	Reserve	2	R	
0092H	Zero sequence current	2	R	ResolutionÖ0.01A
0093H	Voltage imbalance	2	R	UINT16
0094H	Current imbalance	2	R	ResolutionÖ0.001
	Addrossähisch Shitå			parity bit Ö
0095H	AddressÄhigh 8 bitÅ BaudÄlow 8 bitÅ	2	R/W	0 ÖNone
	DAUGAIOW & DITA			1 ÖOdd

				2 ÖEven
				stop bitÖ
				0 Öone stop bit
000011004511	Deserve			1 Ötwo stop bit
0096H00A5H	Reserve		DAM	4.0000
00A6H	Code	2	R/W	1-9999
00A7H-00C9H	reserve		D // //	0.055
00CAH	The back light time	2	R/W	0-255minutesÈmore than 000 stay lighon
00CBH0120H	reserve			
0121H	Daily frozen time:Hour	2	R/W	
0122H	Monthly frozentime:daÃhour	2	R/W	
0123H0163H	Reserve			
0164H	Active power of A phase	4	R	
0166H	Active power of B phase	4	R	Complement form
0168H	Active power of C phase	4	R	ResolutionÖ0.001kW
016AH	Total active power	4	R	
016CH	Reactive power of A phase	4	R	
016EH	Reactive power of B phase	4	R	Complement form
0170H	Reactive power of C phase	4	R	ResolutionÖ0.001kvar
0172H	Total reactive power	4	R	
0174H	Apparent power of A phase	4	R	
0176H	Apparent power of B phase	4	R	Complement form
0178H	Apparent power of C phase	4	R	ResolutionÖ0.001kVA
017AH	Total apparent power	4	R	
017CH	Power factor of A phase	2	R	
017DH	Power factor of B phase	2	R	Complement form
017EH	Power factor of C phase	2	R	ResolutionÖ0.001
017FH	Total power factor	2	R	
0180H	Maximum forward active demand a day	2	R	
0181H	Occur time:minuteAhour	2	R	
0182H	Maximum reversing active demand a day	2	R	_
0183H	Occur time:minuteAhour	2	R	
0184H	Maximum forward reactive demand a day	2	R	
0185H	Occur time:minuteAhour	2	R	1
0186H	Maximum reversing reactive demand	2	R	
0187H	Occur time:minuteÃhour	2	R	
0188H	Maximum forward active demand las day	2	R	ResolutionÖ0.001 Occur time:minuteÃ

0189H	Occur time:minuteÃhour	2	R	hour
	Maximum reversing active demand			
018AH	last day	2	R	
018BH	Occur time:minuteÃhour	2	R	
040011	Maximum forward reactive demand	0		
018CH	last day	2	R	
018DH	Occur time:minuteÃhour	2	R	
018EH	Maximum reversing reactive demand	2	R	
UIOEH	last day	2	K	
018FH	Occur time:minuteÃhour	2	R	
0190H	Maximum forward active demand las	2	R	
019011	2 days		IX	
0191H	Occur time:minuteAnour	2	R	
0192H	Maximum reversing active demand	2	R	
019211	last 2 days		IX	
0193H	Occur time:minuteAnour	2	R	
0194H	Maximum forward reactive demand	2	R	
019411	last 2 days		IX.	
0195H	Occur time:minuteAnour	2	R	
0196H	Maximum reversing reactive demand	2	R	
019011	last 2 days		IX.	
0197H	Occur time:minuteAnour	2	R	
0198H	Current forward active demand	2	R	
0199H	Current reversing active demand	2	R	
019AH	Current forward reactive demand	2	R	
019BH	Current reversing reactive demand	2	R	
019BH01FFH	Reserve			
0200H	Maximum voltage on A phase	2	R	
0201H	Occur dateÖmonthÃday	2	R	
0202H	Occur timeÖhour Ãminute	2	R	
000011	Maximum voltage on B phase and		_	
0203H	occur time	6	R	
020611	Maximum voltage on C phase and	6	R	
0206H	occur time	6	K	
020011	Maximum current on A phase and	6	R	
0209H	occur time	6	K	
020CH	Maximum current on B phase and	6	R	
020CH	occur time	O	K	
020EH	Maximum current on B phase and	6	D	
020FH	occur time	6	R	
0212H	Maximum active power on A phase	4	R	
0214H	Occur dataÖmonthÃday	2	R	
0215H	Occur timeÖhour Ãminute	2	R	

0216H	Maximum active power on B phase and occur time	8	R
021AH	Maximum active power on C phase and occur time	8	R
021EH	021EH Maximum total active power and occ		R
0222H	time Maximum reactive power on A phase	8	R
0226H	and occur time Maximum reactive power on B phase	8	R
022AH	and occur time Maximum reactive power on C phase	8	R
022EH	and occur time Maximum total reactive power and	8	R
0232H	occur time Maximum apparent power on A phas	8	R
0236H	and occur time Maximum apparent power on B phase	8	R
023AH	and occur time Maximum apparent power on C phase	8	R
023EH	and occur time Maximum total apparent power and occur time	8	R
0242H	Minimum voltage on A phase and	6	R
0245H	occur time Minimum voltage on B phase and	6	R
0248H	occur time Minimum voltage on C phase and	6	R
024BH	occur time Minimum current on A phase and	6	R
024EH	occur time Minimum current on B phase and	6	R
0251H	occur time Minimum current on C phase and	6	R
0254H	occur time Minimum active power on A phase ar	8	R
0258H	occur time Minimum active power on B phase	8	R
025CH	and occur time Minimum active power on C phase	8	R
0260H	and occur time Minimum total active power and occu	8	R
0264H	time Minimum reactive power on A phase and occur time	8	R
			l

000011	Minimum reactive power on B phase	8	р		
0268H	and occur time	0	R		
026CH	Minimum reactive power on C phase	8	R		
020CH	and occur time	0	K		
0270H	Minimum total reactive power and	8	R		
027011	occur time	0	K		
0274H	Minimum apparent power on A phase	8	R		
027411	and occur time	O K	K		
0278H	Minimum apparent power on B phase	8	R		
027011	and occur time	O	K		
027EH	Minimum apparent power on C phase	8	R		
027 LTT	and occur time	0	IX		
0280H	Minimum total apparent power and	8	R		
0200H	occur time	O	IX.		
0285H1FFFH	Reserve				
F009H	Device model	2	R	A400(HEX)	

9.2 Floating point electrical parameter data

Secondary sid	de datavithout multiplication of the vari	able ratio		
5300H	Voltage of A phase	4	R	
5302H	Voltage of B phase	4	R	
530 4 H	Voltage of C phase	4	R	Float
530 6 H	Voltage between AB	4	R	Unit:V
5308H	Voltage between €	4	R	
530AH	Voltage between AC	4	R	
530 C H	Current of A phase	4	R	Float
530⊞	Current of B phase	4	R	Unit:A
5310H	Current of C phase	4	R	Offic.A
5312H	Active power of A phase	4	R	
531 4 H	Active power of B phase	4	R	Float
531 6 H	Active power of C phase	4	R	Unit:W
5318H	Total active power	4	R	
531AH	Reactive power of A phase	4	R	
531 C H	Reactive power of B phase	4	R	Float
531⊞	Reactive power of C phase	4	R	Unit:var
5320H	Total reactive power	4	R	
5322H	Apparent power of A phase	4	R	
532 4 H	Apparent power of B phase	4	R	Float
532 6 H	Apparent power of C phase	4	R	Unit:VA
5328H	Total apparent power	4	R	
532AH	Power factor of A phase	4	R	Float

532CH	Power factor of B phase	4	R	7	
	· ·		R		
532EH	Power factor of C phase	4	R	_	
5330H	Total power factor	4		Floot United In	
5332H	frequency		R	Float Unit:Hz	
5334H	zero line current	4	R	Float Unit:A	
-	data that has been multiplied by the varia				
0800H	Voltage of A phase	4	R	_	
0802H	Voltage of B phase	4	R	_	
0804H	Voltage of C phase	4	R	Float	
0806H	Voltage between AB	4	R	Unit:V	
0808H	Voltage between &	4	R		
080AH	Voltage between AC	4	R		
080CH	Current of A phase	4	R		
080EH	Current of B phase	4	R	Float	
0810H	Current of C phase	4	R	Unit:A	
0812H	zero line current	4	R		
0814H	Active power of A phase	4	R		
0816H	Active power of B phase	4	R	Float	
0818H	Active power of C phase	4	R	Unit:kW	
081AH	Total active power	4	R		
081CH	Reactive power of A phase	4	R		
081EH	Reactive power of B phase	4	R	Float	
0820H	Reactive power of C phase	4	R	Unit:kvar	
0822H	Total reactive power	4	R	1	
0824H	Apparent power of A phase	4	R		
0826H	Apparent power of B phase	4	R	Float	
0828H	Apparent power of C phase	4	R	Unit:kVA	
082AH	Total apparent power	4	R		
082CH	Power factor of A phase	4	R		
082EH	Power factor of B phase	4	R		
0830H	Power factor of C phase	4	R	Float	
0832H	Total power factor	4	R		
0834H	frequency	4	R	Float Unit:Hz	
0836H	Voltage imbalance	4	R		
0838H	Current imbalance	4	R		
083AH	Current forward active demand	4	R		
083CH	Current reversing active demand	4	R	Float Unit:kW	
083EH	Current forward reactive demand	4	R		
0840H	Current reversing reactive demand	4	R	Float Unit:kvar	
0842H	Current total active energy	4	R		
0844H	Current spike active energy	4	R	UINT32	
0846H	Current peak active energy	4	R	ResolutionÖ0.1kWh	
0848H	Current flat active energy	4	R	(Primary side data	
004011	Current nat active energy	 4	I.V.	╛	

			,	1
084AH	Current valley active energy	4	R	
084CH	Current forward active total energy	4	R	
084EH	Current forward active spike energy	4	R	
0850H	Current forward active peak energy	4	R	
0852H	Current forward active flat energy	4	R	
0854H	Current forward active valley energy	4	R	
0856H	Current reversing active total energy	4	R	
0858H	Current reversing active spike energy	4	R	
085AH	Current reversing Active peak energy	4	R	
085CH	Current reversing active flat energy	4	R	
085EH	Current reversing Active valley energy	4	R	
0860H	Current total reactive energy	4	R	
0862H	Current reactive spike energy	4	R	
0864H	Current reactive peak energy	4	R	
0866H	Current reactive flat energy	4		
0868H	Current reactive valley energy	4	R	
086AH	Current forward reactive total energy	4	R	
086CH	Current forward reactive spike energy	4	R	UINT32
086EH	Current forward reactive peak energy	4	R	ResolutionÖ0.1kvarh
0870H	Current forward reactive flat energy	4	R	(Primary side dat)a
0872H	Current forward reactive valley energy	4	R	
0874H	Current reversing reactive total energy	4	R	
0876H	Current reversing reactive spike energ	4	R	
0878H	Current reversing reactive peak energ	4	R	
087AH	Current reversing reactive flat energy	4	R	
087CH	Current reversing reactive valley energ	4	R	

9.3 History energy frozen time and history energy energy date

ADL400 ¶ registers on frozen by day and by month.

Table 9 Frozen time communicate address

Address	Name		Note
0121H Frozen time by day R		R/W Null (High byte)	
01210	Frozen time by day	IN/VV	Hour(Low byte)
0422	Frozen time by month	R/W	Day(High byte)
0122H			Hour(Low byte)

ADL400 can achieve the history energy statistic in last 48 months and last 90days. (Each tariff rate of energy can be recorded.) The history energy record list below its lithe L Malfield U V \P

Table 10 History energy communicate address

Address	Name	Data list	Name	Note
6000H	Assemblage of last 1 day	6000H	Frozen time:YYMM	

	demand and energy
6022H	Assemblage of last 2 day
0022H	demand and energy
«	«
6BD2H	Assemblage of last 90 day
0BDZH	demand and energy
reserve	reserve
7000H	Assemblage of last 1
70000	month¶demand and energy
7022H	Assemblage of last 2
70220	month\$ demand and energ
«	«
763EH	Assemblage of last 48
/ USET	month¶ demand and energ

ĺ	Г	
6001H	Frozen time: DDhh	
6002H	total active energy	
6004H	Spike active energy	kWh
6006H	peak active energy	UINT32
6008H	flat active energy	Keep 2 decimal places (Secondary side data)
600AH	valley active energy	
600CH	total reactive energy	
600EH	Spike reactive energy	kvarh UINT32
6010H	peak reactive energy	Keep 2 decimal places
6012H	flat reactive energy	(Secondary side data)
6014H	valley reactive energy	
6016H	Total amount of phase A	
	forward active energy	kWh
6018H	Total amount of phase B	UINT32
	forward active energy	Keep 2 decimal places
601AH	Total amount of phase C	(Secondary side data)
	forward active energy	
601CH	Maximum active demand	ResolutionÖ0.001kW
601DH	Occurrence time: mrhh	(Secondary side data)
601EH	Occurrence time : DĐMM	(Secondary side data)
601FH	Maximum reactive demand	ResolutionÖ0.001kvar
6020H	Occurrence time: mrhh	(Secondary side data)
6021H	Occurrence time: DEMM	(Occordary side data)

9.4 Sub harmonic data

ADL400 has function of narmonic The function include 31 harmonic statistics of voltage and current of each phase appare mally monicactive/reactive power of each phase apparently, fundamental voltage and current of each phase apparently and fundamental active/reactive power of each phase apparently.

Table 11 Harmonics data address

Address	Name	Length	R/W	Note
05DDH	THDUa	2	R	Total distortion rate of voltage
05DEH	THDUb	2	R	and current on each phase
05DFH	THDUc	2	R	UINT16

05E0H	THDla	2	R	ResolutionÖ0.01%
05E1H	THDIb	2	R	
05E2H	THDIc	2	R	
05E3H	THUa	2 h 30	R	Harmonicvoltage on 2 ^d -31 st
0601H	THUb	2 h 30	R	UINT16
061FH	THUc	2 h 30	R	ResolutionÖ0.01%
063DH	THIa	2 h 30	R	Harmoniccurrent on 2 ^d -31 st
065BH	THIb	2 h 30	R	UINT16
0679H	THIc	2 h 30	R	ResolutionÖ0.01%
0697H	Fundamental voltage on A phase	2	R	
0698H	Fundamental voltage on B phase	2	R	
0699H	Fundamental voltage on C phase	2	R	UINT16
069AH	Harmonicvoltage on A phase	2	R	ResolutionÖ0.1V
069BH	Harmonicvoltage on B phase	2	R	
069CH	Harmonicvoltage on C phase	2	R	
069DH	Fundamental current on A phase	2	R	
069EH	Fundamental current on B phase	2	R	
069FH	Fundamental current on C phase	2	R	UINT16
06A0H	Harmoniccurrent on A phase	2	R	ResolutionÖ0.01A
06A1H	Harmoniccurrent on B phase	2	R	
06A2H	Harmoniccurrent on C phase	2	R	
06A3H	Fundamental active power on A phas	2	R	
06A4H	Fundamental active power on B phas	2	R	INT16
06A5H	Fundamental active power on C phas	2	R	ResolutionÖ0.001kW
06A6H	Total fundamental active power	2	R	
06A7H	Fundamental reactive power on A pha	2	R	
06A8H	Fundamental reactive power on B pha	2	R	INT16
06A9H	Fundamental reactive power on C pha	2	R	ResolutionÖ0.001kvar
06AAH	Total fundamental reactive power	2	R	
06ABH	Harmonicactive power on A phase	2	R	
06ACH	Harmonicactive power on B phase	2	R	INT16
06ADH	Harmonicactive power on C phase	2	R	ResolutionÖ0.001kW
06AEH	Total harmonicactive power	2	R	
06AFH	Harmonicreactive power on A phase	2	R	
06B0H	Harmonicreactive power on B phase	2	R	INT16
06B1H	Harmonicreactive power on C phase	2	R	ResolutionÖ0.001kvar
06B2H	Total harmonicreactive power	2	R	

9.5 SOE record

Address	Name	Data list	Name
3001H	Last event record	0000H	Occur date: YYMM

3002H	Last2 event record	
«	«	
3064H	Last100event record	

0001H	Occur time: DDhh
0002H	Occur time: mmss
0003H	Event number
0004H	Eventdetails
0005H	Reserve

Event num	Name
0100	Power on
0200	Clear
0700	Time calibration

Details	Note
0001	Clear current energy
0002	Clear history energy on
0002	Flash
0003	Clear maximum demand
0004	Clear history energy
0005	Clear maximum value on
0005	a period
0006	Clear out

Example: The address is 001 at present, and we send the code: 01 03 30 01 00 06 9B 08 to get the last event record, and the slave station will give back: 011023001C 08 0A 01 01Ä2018/1/8 10:1:1Å01 00ÄpoweredÅ 00 00Äno detailsÅ 00 00ÄreservedÅ 80 23